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AN ANALYSIS OF SUPERSONIC FLOW PHENOMENA IN CONICAL NOZZLES 

BY A METHOD OF CHARACTERISTICS 

By Linwood B. Callis 
Langley Research Center 

SUMMARY 

The method of axisymmetric irrotational characteristics is used in  the analysis of 
the supersonic and hypersonic flow of a calorically perfect gas through conical nozzles. 
Solutions determine the Mach number, flow angularity, and stream function throughout 
the flow field in  addition to the nozzle lengths and cone half-angles required for  the expan- 
sion of the flow to a given center-line Mach number. 

Calculations carried out for  a wide range of inlet Mach numbers and cone half- 
angles allow, as in previous work, the prediction and explanation of the formation of 
oblique shock waves within the started nozzle. 
f ree  solutions are obtained with minimum distortion of the conical profile. 
number contours with shock waves eliminated are shown. 

By using a characteristics method, shock- 
Typical Mach 

An evaluation of the commonly made one -dimensional-flow assumption as applied 
to conical nozzles is made, and it is shown that significant e r r o r s  may be present. 

Finally, the existence of regions in which the flow properties prove to be independent 
of changes in the cone half-angle is pointed out and its importance is described and 
discussed. 

INTRODUCTION 

Currently, at Langley Research Center, much effort is being devoted to a study of 
basic modifications of the expansion tube as described in reference 1. 
fications considered, the one most likely to gain acceptance appears to be the expansion 
tunnel (ref. 2) , a device utilizing a scoop-type conical nozzle to  expand flows at relatively 
high Mach numbers (between 2 and 20) to even higher Mach number test conditions. To 
carry out the analysis of such a device, it w a s  necessary that some means of accurately 
predicting the perfect-gas flow properties through the conical nozzles be available. The 
commonly made assumptions of "one-dimensional" flow (ref. 3) were believed to  be 
inadequate since, for high Mach numbers, the flow to be expanded may proceed along the 
center line for a large number of inlet radii past the nozzle entrance before interacting 

Among the modi- 



with the initial steady-flow expansion characteristics. 
stances, a one-dimensional analysis would prove to be inadequate, and possibly the cause 
of serious e r ror .  

Obviously, under such circum- 

As a result of these considerations, such flows were examined in  a more detailed 
fashion allowing reasonably precise information to be extracted for purposes of design 
and analysis. To this end, the method of axisymmetric irrotational characteristics has 
been applied, yielding solutions for a wide range of nozzle half-angles and inlet Mach 
numbers. 

In addition to the information expected of the resulting computer program, several  
effects were observed which were believed to be of particular interest. Among these 
were recognition of the fact that, for scoop nozzles with sharp corners,  a portion of the 
expanded flow field is completely independent of the growth of a viscous layer along the 
nozzle wall  and that a standing oblique shock system is present in the steady-flow nozzle. 
Such shock systems have been observed in reference 4 and their cause and a method of 
elimination discussed in reference 5. Observance of these effects in the present work 
prompted an extended analysis conducted to determine 

(1) the practical value, if any, of the region of flow independent of viscous effects 
on the wall, and 

(2) whether the shock system could be eliminated from sharp-cornered scoop 
nozzles with inlet Mach number greater than 2 without seriously altering the nozzle 
profile . 
A discussion of these effects and the means of analysis is presented in  the following 
sections. 

SYMBOLS 

A exit-to-inlet a rea  ratio 

F(x) general function of x 

j ,k,r summation indices 

l7m 

M Mach number 

parameters defined in equations (A3) 

characteristics solution of Mach number MC 
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one-dimensional solution of Mach number 

Mach number at nozzle inlet 

inlet radius of nozzle 

radial distance in  spherical coordinates 

axial coordinate measured from nozzle inlet 

nondimensional axial coordinates, x'/R 

value of x on center line at beginning of region I 

value of x on center line at termination of region I 

radial coordinate measured from center line 

nondimensional radial coordinate, y'/R 

radial component of velocity vector 

azimuthal component of velocity vector 

component of velocity vector in 8 direction 

ratio of specific heats, 1.4 for  present work 

boundary - laye r displacement thickness 

e r r o r  parameters,  ( M ~  - M ~ ) / M ~  

parameter defined in  equations (A3) 

flow angle, degrees 

wal l  angle at nozzle corner,  degrees 

wall  angle at nozzle corner corrected for viscous effects (see eq. (3)), degrees 
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em wall  angle in region 111, degrees 

emax wall  angle at inflection point, degrees 

wall  angle for source flow, degrees 
eW 

1.1 = sin" (1/M) 

P mass  density 

4 azimuthal angle in  spherical coordinates 

Subscripts: 

AYB characteristic intersection at which properties a r e  known 

C characteristic point to  be solved for  

i conditions at nozzle inlet 

max conditions at inflection point of nozzle wall  

ref conditions at known reference point 

A bar over a symbol indicates quantities averaged during iterative solution for a 
char act erist ic point. 

ANALYSIS 

The present investigation was  carried out by using the well-known equations of 
change, derived in reference 6 and given in appendix A, along the characteristic lines. 
No general discussion of the equations, their derivation, or  their application is included 
in  the present work, inasmuch as a detailed discussion is given in reference 6. 

Initially, the problem consisted of setting up a forward-computing characteristics 
solution for supersonic and hypersonic flows through conical nozzles. 
Mach numbers and flow angularity were assumed to be known and the wall  shape (conical) 
was specified. Figure 1 illustrates the general configuration, nomenclature , and the 
coordinate system used, the origin of which is taken on the center line at the nozzle 
entrance. 

The inlet-flow 
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Input required for  such a forward-computing characteristics solution consists of the 
specification of values of x, y, 0, p ,  and M along the leading expansion character- 
ist ic from the corner to the center line and the Prandtl-Meyer conditions at the sharp 
nozzle corner. With the specification of the required input, the characteristics solution 
may then proceed downstream, flow properties being determined at the intersection of 
first-family with second-family characteristics. 

Since the validity of the characteristics solutions depends in  part upon the choice of 
variables, the mesh size used, and the means of determining higher order effects, it was 
desired to  test  the reliability of the present solutions by solving numerically a flow system 
fo r  which exact solutions can be determined, For this purpose, solutions to  source o r  
radial flow were generated with the present program. 

Properties of the source flow field, depending solely on the radial distance from the 
designated source, may be analytically described simply by a consideration of the com- 
pressible continuity equation written in  spherical coordinates together with the isentropic 
flow relations. Derivation of the governing field equations for this flow is presented in  
appendix B as well as the equations necessary to determine, for program input purposes, 
the shape of and properties along the leading characteristic. Results of this comparison 
a re  shown in figure 2 for  source flow with a beginning Mach number at the wa l l  of 2.0 and 
Ow = 5.0°. Agreement with theory in  all check cases  w a s  excellent. 

It was  believed at this point that solutions to the conical nozzle problem could be 
generated with confidence. 
mined that characteristics of like family intersected near the center line, suggesting the 
existence of an oblique shock wave (as observed in ref. 4) lying just downstream of the 
corner expansion. Sketch 1 indicates this phenomenon, and Mach number contours a r e  
shown in figure 3 for a typical case in which this  effect was  observed. These Mach num- 
ber  contours, coupled with observed regions of negatively inclined flow near the center 
line and regions of flow more positively inclined than the wall  angle serve both to confirm 
and to indicate the necessity of an oblique shock structure in  this position. 

However, when these solutions were  attempted, it w a s  deter- 
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At this point, every effort was  made to make certain that the observed effects were 
not due to the particular inlet condition, wall  angle, characteristics mesh size, o r  com- 
puting e r rors .  Therefore, a large number of cases  were run which encompassed a varia- 
tion of these parameters. In each case, the computing sequence was  checked in  detail and, 
in each, the converging of the characteristics was present. It was concluded that the phys- 
ical  presence of a weak shock system, also reported in references 4 and 5, w a s  the cause 
of the difficulty and that the flow problem as posed could not be solved by means of the 
irrotational system of characteristics. 

Two alternatives presented themselves: Analyze the system, including the discon- 
tinuous structure or determine numerically the shape of a transition section, eliminating 
the shock, yet allowing a conical nozzle to be attached immediately downstream of this 
section. The second alternative w a s  chosen. 

The problem as posed at this point consisted of determining the shape of a transition 
region required to eliminate the observed compression characteristics, In order to 
accomplish this, the flow field w a s  divided into three computational regions as shown in 
figure 4. 

Region I consists of the flow field embraced by the corner rays. This portion of the 
flow was  determined to be free of compression characteristics and computations were 
carried out as originally intended. 
intersecting characteristics would shift the beginning of region 11 slightly upstream, it is 
believed that the shift would not be sufficient to affect the flow in region I. Hence this 
effect was ignored. 

Though a rigorous determination of the envelope of 

It is within region II that the observed compressions a r e  eliminated. This elimina- 
tion is accomplished by restricting the center-line Mach number in region II to the last 
determined value in region I and thus eliminating the possibility of a shock. This specifi- 
cation of the center-line Mach number, coupled with a solution in region I, permits the 
flow of characteristic computations (indicated by arrows in fig. 4) to be reversed and thus 
allows the determination of the wall  shape required to insure such a flow configuration. 

With such a computation scheme in  region 11, it may be expected that the wall  angle 
wil l  initially vary in a fashion such that the flow exiting from region I wi l l  be further 
expanded and will  allow elimination of the troublesome intersecting characteristics. 
However, to satisfy continuity relationships, it can be argued that maintaining a constant 
center-line Mach number in region 11 will  require that an inflection point and maximum 
wall  angle be present past which the wall  angle grows progressively smaller until it 
reaches zero and the flow across  the entire c ross  section has constant properties. It is 
at, or downstream of, the inflection point that region II may be safely terminated by 
attaching a conical nozzle with a half-angle equal to the local wall  angle. 



At this point, a word of explanation is offered with regard to the determination of 
wall-point conditions in  region II. Normally, when the center-line Mach number is spec- 
ified, wall  contours a r e  determined by evaluating properties along a characteristic line 
from the center line toward the wal l  until continuity requirements a r e  satisfied. 
procedure, however, implies an upstream movement from one characteristic to  the next, 
the reverse of the present situation illustrated in sketch 2. 

This 

- 
General flow of calculations 

Sketch 2 

Hence, th i s  means of determining the wall  contour cannot be used. Instead, the predeter- 
mined center-line Mach number in region I1 and the solutions along the preceding charac- 
terist ic a r e  used to determine solutions for properties along the characteristic in  question 
at all points except the wall point. Values of M and 6' at the wal l  point (the coordi- 
nates of which a r e  simply determined) cannot be determined with the equation of change 
(eq. (Al)) since, without interpolating, only one equation is available to solve for the two 
flow conditions. 
this wall  point, all involving either interpolation o r  extrapolation. 
instance is made to a Lagrangian extrapolation of M and 19, along the characteristic of 
interest, to  the wal l  by utilizing a fourth-degree-polynomial fit. 
such a f i t  to a function F(x) is 

Various methods are available for determining the flow variables at 
Recourse in this 

The relation yielding 
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the indexed values of x being the points at which the function is known. With the five 
known points immediately preceding the wall  point (shown in sketch 2) equation (1) may 
be used to evaluate M and 8 at the wall. This extrapolation, carried out along a 
characteristic of the first family in  t e rms  of x, extends one mesh spacing or less and 
is believed to be quite accurate. Computations proceed in  this fashion until the wall  
inflection point is reached or until a specific local wal l  angle (less than the maximum 
wall angle) downstream of the inflection point is reached. 

In region 111, the direction of computation along the characteristics is once again 
reversed and the solution, with the wall shape specified, is continued to  completion. Such 
a computational scheme, programed for  an electronic computer, was  found t o  be success- 
ful in  removing shocks from conical nozzles. Similar methods were used in  reference 5. 
Typical Mach number contours for such a shock-free nozzle a r e  indicated in  figure 5 for 
a uniform parallel flow of Mi = 2.0 entering a nozzle with an initial wall angle of 9.58O. 
The solution indicates that, at the end of the transition section, a maximum wall angle of 
15.151~ is reached, this being taken as the half-angle of the attached conical nozzle. Fur- 
ther,  Mach number contours illustrate the existence of a rhombus of parallel constant- 
property flow resulting from the specification of an invariant center-line Mach number 
with region II. Downstream of this rhombus, contours smooth out and approach the 
spherical-cap source flow profiles (fig. 2(b)) to which they must tend in  the limit. 
ther discussion of this flow configuration is presented in  a subsequent section.) 

(Fur- 

RESULTS AND DISCUSSION 

Region I 

Numerical solutions to the present problem indicate that in region I no converging 
or compression characteristics a re  present. This is both expected and easily understood 
since in  this flow region no effects of the wall contour a r e  manifested, the expansion being 
generated solely by the flow around the sharp corner. Shown in figure 6 is a composite 
analysis of the center-line flow within region I. Presented are the axial distance % for 
a given Mi and Q1, at which this region terminates and the observed shock occurs. 
Cross-plotted a re  values of Mach number reached during this expansion and immediately 
prior to the shock. 

The upstream limit of region I, xf, is given by the expression 

Xf =\JM? - 1 

for uniform entering flow and is the number of radii the center-line flow must travel past 
the nozzle inlet before the flow expansion actually begins. Clearly, to  this point in  the 

8 



nozzle, use of a one-dimensional approximation is in  e r r o r  because the center-line flow 
has not "sensed" the presence of the nozzle. Errors of this nature a r e  more severe for 
configurations having high inlet Mach numbers such as those anticipated in expansion- 
tunnel operation. 

Also interesting is the relative expansion effectiveness of a given corner turn in  an 
axisymmetric nozzle as compared to a wedge-type (two-dimensional) nozzle. 
indicates that, fo r  Mi = 5 and OI = lo0, the terminal Mach number, generated by the 
expansion from the corner,  is 35 on the center line. In two dimensions, the same 
entrance conditions and corner turning angle result in a terminal Mach number of 8.83. 
Though such a trend is expected from area-ratio considerations, the magnitude of the 
difference is startling. 

Figure 6 

At this point, one is inclined to speculate on the possible advantages of using an 
axisymmetric corner expansion rather than conventional nozzles for  the purpose of gen- 
erating hypersonic flows. First, however, the similarity between this type of expansion 
process and the minimum-length nozzle expansion should be commented upon. In both, 
all expansion characteristics are generated at the sharp inlet corner of the nozzle. The 
minimum-length nozzle is then contoured so that these characteristics, having been tra- 
versed by the flow, are canceled, uniform flow being established at the nozzle exit. The 
major disadvantage of such a nozzle is that, due to viscous effects, it operates primarily 
at one design point, and attempts to  utilize the nozzle at other than design conditions 
result in  incomplete cancellation, possibly prohibitive. 

In order to circumvent such difficulties, the axisymmetric corner expansion with 
no cancellation may be used, provided the resultant flow gradients in region I a r e  tolerable. 
In this connection, figures 7 and 8 present, respectively, contours of constant M and 0 
in region I as well as the transverse extent of region I (dashed lines) as determined by 
values of Mi and BI. It is clear from figure 7 that, for values of M 2 20, only small  
transverse variations of M occur near the center line (y 5 1) for 2 2 Mi S 20. The 
extent of the region in which this is t rue is determined by the particular values of Mi 
and O1 under consideration. Figure 8, presenting contours of constant 6, indicates 
that for x 2 30 the transverse variation of 8 near the center line is essentially that 
of source flow for the Mi considered here. Clearly, as decreases and M 
increases, the approximation of these gradients by source flow gradients becomes more 
valid and the region over which the approximation can be made becomes larger. Hence, 
the corner expansion provides a flow with essentially source flow gradients with an expan- 
sion to the desired M in  the minimum possible length. In addition, since the flow in 
region I is insensitive to the wal l  contour, the wall may be diverted in  such a way as to  
insure that viscous effects on the center-line flow are minimized. In fact, in  a shock o r  
expansion tube, if the nozzle inlet is used as a scoop expanding (as in the present work) 
only the uniform 'Tnviscid core" of the oncoming flow, viscous effects can be constrained 
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to a modification of the corner half-angle by an amount tan-1 (cos 0, d6*/dx) due to the ,  
initial growth of the displacement thickness at the sharp leading edge. In this connection, 
the relationship between and 0, is given by 

the two angles being identical for inviscid flow. 
for inviscid flow. 

All computations presented herein are 

Two more points, flow invariance and e r r o r  due to one-dimensional approximations, 
should be noted. 
amount simply extends the flow expansion in region I, leaving completely unchanged the 
flow established by the original corner. This is, of course, advantageous in that large- 
angle solutions fo r  given inlet Mach numbers encompass all small-angle solutions. 
fore, from a practical viewpoint, flow generated by lower values of eI is unaffected by 
viscous fluctuations (see eq. (3)) in the turning angle as long as these fluctuations occur 
at higher values of 01. Consequently, if 01 is made large enough to provide a cushion 
against such fluctuations, viscous effects may be removed from the test  entirely as 
indicated in sketch 3.  

For a given inlet Mach number, increasing the corner angle a given 

There- 

Portion of region I 
affected bv viscous + 
layer 

Portion of region I 
E l f r e e  of viscous effects 

Sketch 3 

The prediction of the center-line flow in region I is best accomplished with the aid 
of numerical solutions presented in figure 6 rather than approximate one-dimensional 
methods. 

number, an indication of this e r r o r  being the parameter AM = 

ure 9 as a function of A, 01, and Mi. As seen in figure 9, these e r r o r s  can be signifi- 
cant (up to 60 percent), with M1 having values both above and below Mc. 

One-dimensional assumptions lead to  e r r o r s  in the predicted center-line Mach 

shown in fig- Mc - M1 
MC 
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Values of M1 > Mc occur when the flow first enters the nozzle; a one-dimensional 
analysis predicts an immediate increase in 
ber remains constant fo r  
is encountered, however, values of Mc increase more swiftly than values of M i ,  
eventually surpassing them. 
characteristics solution. 
expansion) and a r e  terminated at the end of this region by dashed lines. 

Mi when, in  fact, the center-line Mach hum- 
Mf - 1 radii past the nozzle entrance. When the expansion 

The one-dimensional theory now tends t o  underpredict the 
Curves in  figure 9 are shown only for region I (the corner 

Region 11 

The first characteristics reflected from the wall  converge to form a weak shock 
within region 11 near the center line. The formation of this shock wave is easily under- 
stood upon consideration of figure 10. This figure presents typical contours of constant 
flow inclination (8 = 3 O ,  4*, 5O,  and So) for  uniform flow entering a conical nozzle at 
Mi = 1.5 with €II = 4.14O and no transition section attached. As previously mentioned, 
within region I some of the flow areas a r e  inclined at angles larger than the conical wall  
angle. This flow must, by some wave mechanism, be turned back toward the center line. 
Since the expansion characteristics "reflected" from the center line are unable to accom- 
plish this, the mechanism which develops is a compression generated by the first charac- 
ter is t ics  reflected from the wall  processing the flow immediately after its exit from 
region I. 
flow at the exit of region I and the final wall  angle reached at the sharp nozzle corner. 

The shock formation then is a reconciliation of an incompatibility between the 

dx The cause of this overexpansion within region I may be traced to the t e r m s  -1 - Y 
and - m g  in the equations (Al) and (A2), respectively. These terms,  which vanish in 
the two-dimensional solution, contribute in the axisymmetric solution for 8 in such a 
fashion that along a corner-ray characteristic 
the corner value to a center-line value of zero. 
metric flow, combine to drive 
which it declines to zero at the center line. 

Y 

8 does not decrease monotonically from 
Rather, these te rms ,  peculiar to axisym- 

8 to a maximum value (greater than the wall  angle) from 

Hence the shock, as pointed out in reference 5, is an axisymmetric effect not pres- 
ent in two-dimensional flows. It is due to the overexpanded flow coupled with a wall  
contour which does not permit the flow to  be turned back toward the center line gradually. 
From these considerations, it is clear that shocks may be present in a variety of nozzles 
with a wide range of inlet Mach numbers and with contours which, though divergent, are 
specified arbitrarily. To avoid this situation, the present scheme has been used to deter- 
mine a transition region necessary to  prevent shock formation. As has been argued pre- 
viously, there is, at the downstream end of this transition, an inflection point. Figures 11, 
12, and 13 show, respectively, values of emax, sax, and ymax at this point as a 

11 

I 



function of 0, and Mi. Figure 14 illustrates a typical transition profile required to  
prevent shocks from forming in a conical nozzle. 

With values of Omax, XmZ, and Ymax available, it w a s  believed that the entire 
family of transition profiles could be easily represented by a fourth-degree polynomial 
of the form 

4 

Y = 1 C p  (4) 
r=O 

where, with known conditions at the inflection point and sharp corner, the equations for  
Ci are determined to be 

co = 1.0 

C1 = tan 01 

~2 = E(ym, - 1) - 3xmax(tan + 

+ 5 tan emmu- 1 
3 xmax 

The circular symbols shown in figure 14 indicate points on the transition profile 
determined with the aid of equations (4) and (5) and data presented in  figures 11 to 13. 
Transition profiles may easily be determined in  this fashion, and it is believed that these 
profiles will result in  shock-free flow. 

The section on "Analysis" indicates that computations in region 11 may be stopped 
when the inflection point of the wall  is reached. The program, however, is such that the 
calculations of the wall  contour could be continued past the inflection point until any 
arbitrary wall  angle, l ess  than the value at the inflection point, is reached. Continuing 
the calculations until 
over the entire c ross  section. This capability provides assurance that shock-free flow 
can be achieved in a nozzle having any desired wall  angle. In addition, i f  testing within 
the rhombus of uniform flow is desired, the dimensions of this rhombus can be governed 
by extending region 11 past the wall  inflection point. It is, in fact, the intersection of the 
rhombus with the nozzle wall  that terminates the minimum-length-nozzle contour. 

81 = 0 results in a minimum-length contour with uniform flow 
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In light of these efforts to  eliminate the predicted shock wave, it is natural to  
question the effect on the nozzle flow should the shock be allowed to develop. Weak 
disturbances (as the present shocks a r e  assumed to be), though failing to separate the 
boundary layer, may cause perturbations in the expected flow quantities or  a general 
increase in the entropy of the nozzle flow. These effects, which reduce nozzle efficiency, 
would be harmful in nozzles used with propulsive units. Such effects would render useless 
nozzles used in investigations in  which a relatively precise knowledge of the chemical 
kinetics of the flow is required. In general, it is desirable to avoid shock formations in 
most nozzles with high flow velocity. 

Wave formations such as those discussed and predicted in the present paper have 
not been observed experimentally to  the author's knowledge. It is not certain whether 
this lack of verification is due to a lack of investigation or to  a washing-out effect due to 
viscous effects. Since the flow adjacent to the wall experiences a decrease in the value 
of tan-l(cos eI d6*/dx) 
in a fashion such that an effective fluid-dynamic contouring of the wall  occurs and allows 
the overexpanded flow to adjust without the influence of a shock. These, however, are 
speculations of the author and warrant additional investigation with viscous effects 
accounted for.  

as it progresses downstream, it is conceivable that 6* varies 

Region 111 

Region III consists of the flow field determined by the conical wall  "fitted" at the 
end of Region II. 
and approaching source flow profiles far downstream of the nozzle entrance. It can be 
argued on this basis that AM -. 0 as x - 00, the one-dimensional analysis (appendix B) 
now accurately predicting the flow profiles and quantities. A typical variation of AM 
over all regions is presented in figure 15. The decrease of AM noted in region 11 is 
due to the constancy of Mc within this region and the increase in MI.  In region III, 

AM 
approach to  zero and purely one-dimensional flow. 

The flow in this region is relatively uninteresting, being shock f ree  

increases initially to a value slightly above zero and then begins its asymptotic 

CONCLUDING RE3!lARKS 

An analysis of supersonic flow phenomena for a calorically perfect gas in  conical 
nozzles has been made by use of the method of axisymmetric irrotational characteristics. 
The following remarks are based on the results of this analysis: 

(1) The present forward-computing characteristics solution provides a means of 
generating transition contours and evaluating the resulting shock-free flow. 
are made for fitting conical sections to the transition region or the contours may be 
extended to yield a minimum-length nozzle with uniform exiting flow. 

Provisions 
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(2) The assumption of one-dimensional flow in such nozzles is shown to be seriously 
in e r r o r  in some flow regions. 

(3) Provided source flow gradients can be tolerated, it is suggested that the axisym- 
metric expansion generated by a sharp corner is the most straightforward means of 
expanding a flow to high supersonic Mach numbers. 
conditions in  the minimum downstream distance, these conditions can be made to  be 
completely independent of both viscous effects and, within reason, the wall  contour down- 
stream of the sharp nozzle corner. 

In addition to  achieving the desired 

(4) Conical nozzles and other divergent but arbitrari ly contoured nozzles a re  not 
necessarily f ree  of shock formations caused by axisymmetric overexpansions in such 
flows. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 28, 1966. 
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APPENDIX A 

CHARACTERISTIC EQUATIONS 

As briefly as possible, the basic irrotational axisymmetric characteristic equations 
used in this analysis are presented. 

In differential form, the governing equations relating properties along a character- 
istic of the first  family a r e  

and for the second family are 

dM 
t=M Y 
- -  

= tan(8 - p)  
dx 

- + d Q t a n p  dM 
Y t=M 

where 

1 sin p sin 8 tan p I =  
cos(e + p> 

sin p sin 8 tan p m =  
cos(e - p )  

1 

J g = 1 + -  Y - 1 M 2  
2 

These equations, derived and presented in slightly different form in reference 6, 
may be cast in finite-difference form and the unknown properties solved for at the inter- 
section of characteristics of the opposite family. 
obtained at the various types of intersections are shown as follows: 

Equations by which solutions a r e  

For intersections at a general point: 

- 
yB - yA + xA tan(OA + pA) - xB tan(FB - IB) 

tan(8A + FA) - tan(6B - PB) 
xc  = (A41 
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APPENDIX A 

I - -  
[MB - MA + TBMBBB tan TB + fAiiiABAtan FA 

For intersections at a wall  point: - 
yB - yA + xA tan e, - x tan(oB - PB) 

tan e, - tan(iB - jIB) 
x, = - B. 

y, = (x, - x&an e, + yA 

ec = e, 

For intersections at a center-line point: 

yc = e, = o 

M, obtained from equation (A7) 

For intersections one point off the center line: 

xc7 yc7 and M, obtained from equations (A4), (A5), and (A7), respectively 
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APPENDIX A 

I -  

Equations (Al) to  (A14), being well known and frequently used, will not be discussed 
further either with regard to their derivation o r  their general application. It should, 
however, be pointed out that i n  the present solution, once first approximations of the 
unknown at C have been determined, second approximations that consider second-order 
te rms  are obtained by using the average of the values at A and C, or at B and C, . 
for the inclination of the characteristic lines and for all values of quantities that appear in 
the coefficients of equations (Al) and (A2) (the barred quantities i n  eqs. (A4) to (A14)). 
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APPENDIX B 

SOURCE FLOW 

The orooerties of Source flow pictured physically in the following sketch 

c_ 

Sketch B-1 

may be simply determined with the aid of the compressible continuity equation, written in  
spherical coordinates (r, 0, @), which is 

Since for source flow V6 = V@ = 0, equation (Bl) may be written 

r2pV, = Constant 

Evaluating the constant appearing in equation (B2) at some reference point (at which condi- 
tions are known) and applying the isentropic steady-flow relations yields the following 
implicit solution for M in t e rms  of r: 

Y + l  

18 



APPENDIX B 

If the reference point is chosen so that it lies on the wall, or boundary of the flow, and has 
the Cartesian coordinates x = 0, y = -1, it follows that 

r ref  = -(sin b)-l 

} x = r COS, e + cot e, 

J y = r sin 9 

These equations allow the complete and exact specification of the source flow field. , 

In order to provide required input for the numerical solution of the source flow 
field, values of flow quantities must be known along a characteristic from the reference 
point to the center line. The slope of this characteristic is given as 

If equation (B4) in differential form is substituted into (B5) the result may be written as 

d r  -tan p = de r 

Recognizing that tan p = (M2 - 1)-ll2 and utilizing equation (B3) allows equation (B6) 
to be integrated in closed form to give 

With equations (B3), (B4), and (B7) the leading characteristic is completely defined and 
the necessary input available. 

19 
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